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Abstract— We develop a Deep Learning-based Wearable
Vision-system with Vibrotactile-feedback (DLWV2) to guide
Blind and Visually Impaired (BVI) people to reach objects.
The system achieves high accuracy in object detection and
tracking in 3-D using an extended deep learning-based 2.5-
D detector and a 3-D object tracker with the ability to track
3-D object locations even outside the camera field-of-view. We
train our detector with a large number of images with 2.5-
D object ground-truth (i.e., 2-D object bounding boxes and
distance from the camera to objects). A novel combination of
HTC Vive Tracker with our system enables us to automatically
obtain the ground-truth labels for training while requiring
very little human effort to set up the system. Moreover, our
system processes frames in real-time through a client-server
computing platform such that BVI people can receive real-
time vibrotactile guidance. We conduct a thorough user study
on 12 BVI people in new environments with object instances
which are unseen during training. Our system outperforms
the non-assistive guiding strategy with statistic significance in
both time and the number of contacting irrelevant objects.
Finally, the interview with BVI users confirms that our system
with distance-based vibrotactile feedback is mostly preferred,
especially for objects requiring gentle manipulation such as a
bottle with water inside.

I. INTRODUCTION

In Oct. 2017, an estimate of 253 million people lives with
vision impairment [1]. For these Blind and Visually Impaired
(BVI) people, tasks that seem trivial for those with normal
sight–such as reaching a cup on a table (see Fig. 1 (a))–are
challenging if they do not memorize the location of all ob-
jects. As a consequence, BVI people typically have superior
memory skills and keep everything in a specific order [2].
Unfortunately, memorizing everything might hinder them to
multitask in daily life and such strategy will fail when living
in a shared space with others.

Several systems [3], [4], [5] have been proposed to assist
BVI people in reaching objects. All of them are based on
computer vision techniques. Some of them propose to mount
camera close to head [4], wrist [3] or both [5]. For interfacing
the systems with BVI users, some of them propose to use
tactile [3], audio [4] or both [5]. Despite various system
designs, all of them rely on handcraft visual features (e.g.,
SIFT and HOG) and classical object recognition methods
which are typically less robust. As a result, most systems are
not reliable enough to conduct a thorough user study without
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Fig. 1: The wearable system can guide users to reach target
objects in new environments. (a) A blind user searching the
desired object using vibration guidance. (b) Our wearable
system. (c) Hand-camera view. The boxes are detected
bounding boxes, and the solid-line one is the target object.
White lines divide the guidance direction into upward, left-
ward, downward, and rightward regions.

relying on simplified assumptions or even the wizard of oz
prototype (i.e., assuming perfect perception).

We propose DLWV2–a Deep Learning-based Wearable
Vision-system with Vibrotactile-feedback–aiming to robustly
guide BVI people to reach objects in real-time (see Fig. 1
(b)). Our system consists of “Perception” and “Guidance”
modules. For “Perception”, we leverage modern deep learn-
ing models to become significantly more robust than existing
systems. In particular, our system achieves high accuracy in
object detection (see Fig. 1 (c)) and tracking in 3-D using
an extended deep learning-based 2.5-D detector and a 3-D
object tracker with the ability to update 3-D object locations
even outside the camera field-of-view. We need to train our
deep learning-based detector with a large number of images
with 2.5-D object ground-truth (i.e., 2-D object bounding
boxes and distances from the camera to objects). One of
our main contribution is to propose a novel combination
of HTC Vive Tracker1 with our system which enables us
to automatically obtain the ground-truth labels for training
while requiring very little human effort to set up the system.
Moreover, our system processes frames in real-time through
a client-server computing platform. Our “Guidance” module
generates distance-based vibrotactile feedback to convey the

1https://www.vive.com/us/
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direction and distance information to BVI users. In this way,
the BVI users can expect when the objects are getting closer.

We conduct a thorough user study on 12 BVI people in
new environments with object instances which are unseen
during training. Our system outperforms the non-assistive
guidance strategy with statistic significance in both time
and the number of contacting irrelevant objects. Finally,
the interview with BVI users confirms that our system
with distance-based vibrotactile feedback is mostly preferred,
especially for objects requiring gentle manipulation such as
a bottle with water inside.

II. RELATED WORK

Several systems have been proposed to help Blind and
Visually Impaired (BVI) people live better. Magalhes and
Kohn [6] propose a posture stabilization system to help avoid
falling. Systems assisting object reaching [3], [4], [5] and
navigation [7], [8] have also been proposed. These systems
typically consist of a perception module and a guidance
module. In the following, we discuss their perception and
guidance modules.

1) Perception: The perception module is typically based
on classical computer vision technique which is not robust
enough to conduct a thorough user study. The PalmSight
system [3] relies on handcraft features such as SIFT, HoG
to detect or track objects with a binocular camera on the
palm. Thakoor et al. [4] propose a system with the head-
mounted camera. However, the BVI people need to turn
their head to find the object as the camera is mounted on
the glasses. Besides, their method also relies on handcraft
features. Similarly, the Third Eye system [5] contains a
glasses and glove with cameras and relies on handcrafted
features for perception. Recent advances in deep learning
inspire us to build a system using efficient and robust CNN-
based object detection [9].

2) Guidance: Most of the guidance modules use either
audio channel [4], vibrotactile [3], [6] or both [7], [5]
to convey guidance to BVI users. However, as mentioned
in [7], audio may interfere with environment and/or overload
the BVI users sensory capabilities. Hence, we focus on
vibrotactile feedback in our guidance module.

User studies have been conducted on some of the previous
systems [3], [4], [5]. However, their systems are typically
not reliable enough to conduct a thorough user study without
relying on simplified assumptions (e.g., recognizing the same
object instance as in training) or even the wizard of oz
prototype (i.e., assuming perfect perception). In contrast, we
conduct a thorough user study on 12 BVI people in new
environments with object instances which are unseen during
training in order to test our system.

III. OUR SYSTEM

Our system aims to guide BVI people to reach objects
more accurately and efficiently with the following require-
ments:

1) A compact and low-cost solution.
2) A low latency and highly reliable system.
3) Natural user interfaces.

Fig. 2: System overview. The inputs are processed by the
“Perception” module, then followed by the “Guidance” mod-
ule. Finally, the guidance will be mapped to a vibration
wristband as the system output. Notably, in the “Perception”
module, if the target object is detected, its distance will be
predicted and the process continues. If not, the 3-D object
tracker will be activated to track the object location from the
previous frame.

Hence, we design a wearable system using commodity hard-
ware components (Sec. III-D). We further leverage a state-
of-the-art deep learning algorithm (Sec. III-B) to attain high
reliability and utilize a client-server computing platform (see
implementation details in Sec. III-D) to achieve low latency.
Finally, we use speech recognition to command the system
and vibration feedback to guide users (Sec. III-C) without
overwhelming the users sensory and cognitive capacities.

To achieve this task, we incorporate two essential com-
ponents: vision perception and vibration guidance. In this
chapter, we will give an overview of our system and then
present each component and their implementation in detail.

A. System Overview

Our system has two types of inputs: (1) a sequence of
frames captured from a fish-eye camera and (2) an object
category recognized by an on-device speech recognizer. The
inputs are first processed by the “Perception” module; then,
by the “Guidance” module. In the “Perception” module, our
object detector aims to estimate the 3-D location of the target
object. When the detector fails to detect the object, we pro-
pose a object tracker to keep tracking the 3-D location. The
object tracker will track the previous estimated 3-D object
location with respect to the new camera coordinate system.
Next, in the “Guidance” module, our system calculates the
action in order to steer the user’s hand closer to the target
object. The action turns into a vibration pattern on the wrist
as the output of our system to interact with the user. The
architecture and flow diagram of the system is shown in
Fig. 2. In the following, we introduce our “Perception” and
“Guidance” modules.

B. Perception

To estimate the 3-D object location, the “Perception”
module consists of a real-time 2.5-D object detector and
real-time 3-D object tracker. Specifically, the 2.5-D object
detector provides the direction and distance information of
the target object. Given this information, we compute a 3-
D point as a proxy of the 3-D object location. During the
guidance, if the detector misses the target object, the 3-D
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object tracker will track the 3-D object location in the current
camera coordinate system due to the camera motion on the
wrist. The combination of detector and tracker ensures us
to continuously estimate the 3-D object location even under
challenging detection condition. Next, we will detail the 2.5-
D object detector and 3-D object tracker.

1) 2.5-D Object Detector: The 2.5-D object detector is
designed to complete two real-time tasks: (1) localizing the
objects in the 2-D frames, (2) predicting the distance between
the hand camera and the objects. In this way, our system can
guide BVI people to reach the objects with both direction
and distance of the objects in mind. In order to achieve real-
time performance, we choose YOLO9000 to be our object
detection architecture. However, it is only able to predict
the 2-D locations (i.e., 2-D bounding boxes) of objects,
but not the distance. Therefore, we design a function to
predict the distance. Furthermore, we employ the function
to automatically collect 2-D bounding boxes at scale.
Distance from detection. Rather than introducing another
distance prediction model, we want to directly decode the
distance d from the size of the object 2-D bounding box.
This is possible, since, intuitively, the closer the hand is to
an object, the larger the size of the object is to be captured in
a 2-D image. More precisely, the object size in a 2-D image is
roughly proportional to the inverse distance 1/d. Therefore,
we use the diagonal length l of the object bounding box to
represent the object’s size in the 2-D image. Then, we define
the relationship between the diagonal length and the object’s
distance using as below,

d =
αc

l
, (1)

where αc is the hyperparameter of the object category c. As
we assume objects in a given category are of equal size, the
value of αc is a constant within a certain object category.
To find the scalar αc, we manually annotated 100 bounding
boxes in different distance for each object category and fit αc
with the least square error. To obtain the distance information
from the bounding boxes, we simply use Eq. 1 to calculate
the distances according to the diagonal lengths of bounding
boxes. In this way, our detector can predict both the locations
and distances of the objects.
Scaling-up 2-D box annotation. An important insight from
Eq. 1 is that ground-truth 2-D bounding boxes for training
our detector can be directly computed from 3-D object
locations provided by HTC Vive Tracker. We first project
a 3-D location onto the image to obtain a 2-D object center
o and distance d. Then, we can compute the diagonal length
l of a box using Eq. 1. Given the object center o and box
diagonal length l, we can obtain the 2-D object box for
training without human annotation. In Sec. IV, we describe
how to obtain 3-D object locations using HTC VIVE Tracker
at scale.
Correcting 2-D box annotation To adapt the distortion
introduced by a fish-eye camera, 2-D bounding boxes need
to be corrected. The correction consists of two steps. First,
we shift the location of the box center from (x, y) to (xc, yc)

by using Eq. 2, Eq. 3, and Eq. 4 from OpenCV [10].

r =
√

x2 + y2 (2)

xc = x(1+ k1r2 + k2r4 + k3r6)+(2p1xy+ p2(r2 +2x2)) (3)

yc = y(1+k1r2+k2r4+k3r6)+(p1(r2+2x2)+2p2xy) , (4)

where (x, y) represent the original point o on the image
plane, (xc, yc) is the new point after correction, (k1, k2, k3)
are barrel distortion parameters, and (p1, p2) are tangential
distortion parameters. Second, we resize the 2-D bounding
box by multiplying its height and width by scalex and scaley,
where scalex =

∂xc
∂x and scaley =

∂yc
∂y . Finally, we can acquire

modified bounding boxes for YOLO9000 object detection.
Implementation We train YOLO9000 network on our
dataset for 35000 iterations with a starting learning rate of
0.001 and divide it by 10 at 10000 and 20000 iterations,
using pre-trained Darknet neural network framework [11].
We use a weight decay of 0.0005 and momentum of 0.9.

2) 3-D Object Tracker: The 3-D object tracker is de-
signed to track the 3-D object location when the target object
is outside the camera field-of-view. Since we assume the
target object is stationary, we decide to estimate the camera
motion rather than directly track the object. In this way, our
system can keep tracking the object when the target object is
outside the camera view or the detection of the target object
is missing.
Camera motion estimation Given two consecutive frames,
we propose to apply a deep learning based visual odometry
method (DeepVO [12]) to estimate the 6-DoF camera motion
with absolute scale. Note that DeepVO has two advantages
over geometry-based methods: (1) geometry-based methods
cannot estimate the absolute scale of the camera motion with
a monocular camera, and (2) DeepVO can be trained in an
end-to-end fashion without explicitly handle the distortion
caused by the fish-eye camera. In order to train DeepVO,
we propose to collect a large number of image sequences
with ground truth 6-DoF camera motion in absolute scale
via HTC Vive Tracker.
Tracking 3-D object location. We represent the 6-DoF
camera motion using a rotation matrix R and a translation
vector T . Given the predicted R and T from DeepVO,
we transform the previous 3-D object location Pt−1 into
the updated 3-D object location Pt in the current camera
coordinate at time t as follows,

Pt = R ·Pt−1 +T (5)

Implementation Similar to DeepVO [12], we fine tune the
pre-trained FlowNet [13] on our dataset to predict the camera
motion. We train DeepVO network on our dataset for 10000
iterations with a starting learning rate of 0.0001 and divide
it by 2 at 3000 and 6000 iterations. We use a weight decay
of 0.00004 and momentum of 0.9. For our dataset, we
predict rotation represented by Euler angles and translation
in Euclidean space.

The 3-D object tracker works with the 2.5-D object detec-
tor in order to compensate detection failures. In particular,
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the 3-D object tracker will stop if (1) the target object has
been re-detected, or (2) the target object hasn’t been detected
for 3 seconds.

C. Guidance

Most electronic aids for BVI people transmit signals to
the users via either haptic, audio format or both. Wang et
al. 2017 [7] referred that audio feedback can not only be
indistinguishable in noisy environments, but interfere with
the perception of auditory environmental cues on which BVI
people depend for situational awareness. Consequently, we
choose to use a vibrotactile feedback wristband to deliver
vibration guidance to BVI people for less possible interfer-
ence from the surroundings. Before illustrating the vibration
guidance, we first show how user wears our device in Fig. 4
(a). Since we mount the camera very close to the right-
hand wrist, we set hand position as the origin in the camera
coordinate. We also set the positive x-axis, positive y-axis,
and positive z-axis of the camera to be aligned with the
rightward direction, upward direction, and forward direction
of right-arm.

To guide the user, we design a vibration system using five
vibration motors (see Fig. 4 (c)). Each motor corresponds
to a guidance direction (i.e., upward, downward, leftward,
rightward, or forward). Moreover, each vibration period maps
to guidance distance - specific ranges of distances between
the camera and the target object. In the following, we
describe how 3-D object location is mapped to different
direction and distance guidance, and we give more details
of the design of the vibration wristband.

1) Direction Mapping: We map a 3-D object location
into five directions: “forward”, “rightward”, “upward”, “left-
ward”, and “downward”. The procedure consists of three
steps. First, we connect the camera center and the 2-D object
location to form a ray in 3-D referred to as the object ray (see
Fig. 3). Then, we calculate the angle θ between the object
ray and the forward axis (z-axis) of camera coordinate. When
this angle is less than 30 ◦, the guidance direction is mapped
to “forward”. Otherwise, we project the object ray onto the
2-D plane defined by the x-axis and y-axis. We refer the
projection as projected object ray. The angle φ between the
projected object ray and the positive x-axis is used to map
a 3-D object location to “rightward”, “upward”, “leftward”,
or “downward” directions when φ falls in (-45◦(315◦), 45◦],
(45◦, 135◦], (135◦, 225◦], or (225◦, 315◦], respectively (see
Fig. 3).

2) Distance Mapping: The goal of distance mapping is
to notify users how far they are to the target objects through
varied vibration period. For instance, when a user’s hand
is getting closer to the target object, the vibration will be
triggered more frequently. We describe the mapping from the
distance to vibration period v as Eq. 6. In our pilot user study,
subjects find it sufficient to start distance guidance when the
distance from the target object is within 0.5 meters. Hence,
we set the upper limit distance as 0.5 meters in Eq. 6.

v =
min(d,0.5)

0.5
×0.6 , (6)

Fig. 3: Illustration of direction mapping. First, the camera
center and the object are connected to form an object ray
(green dashed line). Angle θ is between the object ray and
the z-axis (blue dashed line). θ1 is less than 30◦, so the
guidance direction for the mug is mapped to “forward”. θ2
is more than 30◦, so the spoon’s ray is projected onto a 2-
D plane (black solid line). Then we calculate the angle φ

between the projected object ray and the x-axis. Here φ falls
in (-45◦(315◦), 45◦], so the guidance direction for spoon is
mapped to “rightward”.

where v is vibration period in seconds. When the distance
between target objects and users are more than 0.5 meters,
the vibration period is set to a constant. On the other hand,
when the distance between target objects and users are less
than 0.5 meters, the vibration period will become linearly
proportional to the distance. Through Eq. 6, the distance
information can be conveyed to users clearly.

3) Vibration wristband: Our vibration wristband com-
prises a sports wristband and five micro vibration motors
(see Fig. 4 (c)). One of the five micro vibration motors is
on the “front-ring” of the sports wristband, and it will be
activated when the guidance direction is “forward”. The other
four micro vibration motors are on the “rear-ring” of the
wristband, located on the right side, left side, up side, and
down side of the wrist. These four vibration motors will be
activated when the guidance direction is mapped to “right-
ward”, “leftward”, “upward”, and “downward”, respectively.
Moreover, the shorter vibration period indicates the object is
closer to the hand, and vice versa. We tune the strength of
the vibrotactile feedback to ensure that users can feel and
interpret the vibrotactile feedback correctly.

D. Hardware Component

To command the system and vibrotactile feedback, we
employ a speech recognition technique [14] in our system.
Users can utilize audio command to specify the object they
intend to reach. A microphone and a button are attached
to the vibration wristband (see Fig. 4 (c)). After pressing
down the button, the user’s command will be recorded
and classified into one of the ten object categories (e.g.,
“Wallet”). Then, the target object will be specified.

As shown in Fig. 4 (b), a CCD Raspberry Pi camera is
mounted on the right elbow to capture image sequence. The
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Fig. 4: (a) Blue coordinate system is the camera coordinate,
and the green one offsets from the blue one, representing
hand-moving directions. (b) CCD camera. (c) Vibration
wristband and its perspective. The green spots are brushless
micro vibration motor for different direction guidance.

image sequence will be transmitted to the remote server,
which serves as a work station, via WLAN by MJPG
package for further analysis. In the remote server, the image
sequences will be converted to vibration guidance by our
perception module and transmitted back to the vibration
wristband. The total latency is about 0.3 seconds when the
frame rate is 5 FPS and the resolution is 480×640. Besides,
we mount a microcomputer in a shoulder bag to control the
camera, microphone, button and vibration motors.

IV. DATASET

To assist BVI people in reaching daily-life objects more ef-
ficiently and accurately, our system primarily focuses on de-
tecting ten daily life object categories, which include mugs,
keys, combs, wallets, spoons, remotes, scissors, cellphones,
banknote, and plastic bottles. For each object category, we
collected eight instances for training and two others for
evaluation. To collect the dataset, the collector needs to wear
the camera along with an HTC Vive Tracker on the elbow
and follow a data collection procedure which consists of the
following three steps. First, put multiple objects on a table
randomly and annotate their 3-D locations by another HTC
Vive Tracker. Next, start recording the image sequence and
swing the elbow to let the camera capture the objects at
different viewpoints. Finally, move the elbow close to the
object gradually and stop recording the video once the object
is reached. Through such procedure, the camera pose and all
3-D location of objects corresponding to every image are
automatically annotated.

To train our object detector, we need annotated ground-
truth bounding boxes which cannot be acquired directly from
the procedure above. However, using the method mentioned
in Sec. III-B, we can automatically generate a large number
of bounding boxes for the objects, while only 1000 bounding
boxes need to be annotated manually to estimate α in
Eq. 1. We also present the collection procedure in the
supplementary video.

In addition, our camera is allowed to capture the objects

TABLE I: Result of 2.5-D Object Detection. Our 2.5-D
object detector achieves reliable quantitative results for con-
ducting user study (above 90% on Precision, above 72% on
Recall, and less than 0.13m on distance error).

Category Precision (%) Recall (%) Distance
Error (cm)

key 99.3 80.0 9.58
mug 99.9 74.5 13.95
plastic bottle 99.9 72.3 9.51
comb 94.9 96.1 10.53
wallet 97.7 85.3 13.37
spoon 95.4 93.7 13.65
remote 99.7 93.2 13.70
scissors 90.0 99.6 13.83
banknote 99.2 85.9 8.42
cellphone 99.9 80.5 11.76

TABLE II: Result of 3-D Object Tracker. Translation error
(cm) and rotation error (degree) of baseline and tracker
system.

Rotation (deg) Translation (cm)
Baseline 4.32 3.92
3-D Object

Tracker 2.00 2.77

from any viewpoint, which increases the variety of our
dataset. As a result, our detection model can learn more
diverse features through this dataset. Our dataset includes
648 image sequences, 47855 images for training, and 57
image sequences, 13118 images for testing.

V. PERCEPTION MODULE VALIDATION

We validate the reliability of detection and tracking algo-
rithm on our testing dataset before the user study.
2.5-D Object Detector We evaluate the 2.5-D object detector
on the testing set of our dataset. Among all object categories,
the precision rates are above 90%, and the recall rates of
object classes are above 72% when we set the detection
threshold equal to 0.4 (see Tab. I). Moreover, the distance
errors of object classes are all lower than 0.13 meter, which
is shorter than the length of a human palm. Such validation
results prove our detector can be used to estimate 3-D object
location in an acceptable range at first sight. Further user
experiment supports our inference (see Sec. VI).
3-D Object Tracker As described in Sec. III-B.2, we
estimate the camera motion (i.e., rotation and translation) to
update the 3-D object location. Because reaching object is a
sequential action, the camera pose and 3-D object location
according to the camera are within small deviation between
adjacent frames. Therefore, a baseline is to ignore the camera
motion (i.e., do not update the 3-D object location). For
camera motion estimation, we evaluate the performance
of our tracker and the baseline using translation error in
centimeter and rotation error in degree. Tab. II shows that
our tracker achieves lower errors than the baseline method
in camera motion. Moreover, we are interested in the tracking
effect when the object locates outside the camera view or the
detection of the object is missing. We compute the Euclidean
error in centimeter between the predicted 3-D position of the
target object and the ground-truth 3-D position annotated by
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Fig. 5: Error of 3-D object tracker at frames after object
detector fails to detect the target object.

HTC Vive Tracker. As shown in Fig. 5, the error of the
predicted 3-D object location grows as the error of estimated
camera motion accumulated over time. Nevertheless, it can
be alleviated by over 34% with our tracking method. There-
fore, the object tracker is more effective to track the target
object outside the camera view than the baseline.

VI. USER STUDIES

A. Experimental Setup

To measure the efficacy of the proposed system, we design
a task of finding daily necessities. In the task, subjects need
to find the target object on a table in limited time. Before
the formal user study, we have conducted a pilot experiment
in order to define the following experiment setup.

1) Environment: The user study is conducted in new
environments and on the object instances that are unseen
during training. The starting point of the experiment is 50
centimeters in front of the table. For the table-top setup, we
define three levels of distance from the starting point (see
Fig. 6). Before each trial, three to four objects are placed
in each distance level randomly. In this way, subjects would
not memorize the target object location as we shuffle the
desktop layout. Furthermore, to exclude outliers, each trial
has a time limit of 60 seconds, which is two times longer
than the average time of all trials in the pilot test.

2) System Settings:
• Baseline: Subjects will search the target objects with

their right hands without any assisted system.
• System 1: Our system will detect the target objects on

the table and use vibration guidance to guide subjects
to reach the targets.

• System 2: A variant of System 1. We remove distance
information from vibration guidance. That is, the vibra-
tion period is uniform at all distances.

• Oracle: We use HTC Vive Tracker to obtain ground-
truth 3-D object location. It is an oracle system combin-
ing perfect perception and our distance-based guidance
method (i.e., the upper-bound performance of our sys-
tem). However, this system is limited to environments
equipped with HTC Lighthouse and Vive Tracker. The
distance between two base stations of HTC lighthouse
has to be less than 5 meters.

Fig. 6: Environment: The starting point (orange cross) is 50
cm in front of the desktop. Green: Distance level ”Near”,
91cm to 111cm from starting point. Yellow: Distance level
”Medium”, 111cm to 131cm. Red: Distance level ”Far”,
131cm to 151cm.

TABLE III: Measurements of time and number of super-
fluous contacts. Means and standard deviations for the four
settings along with the p-values (∗p < 0.05, ∗ ∗ p < 0.01)
which tested by one-way ANOVA. If the p-value is lower
than 0.05, there exist certain significantly different groups.

Time
Consumption (sec.)

Number
of contacts Success Rate

B 23.60±13.08 5.28±3.32 93.06%
S1 16.86±8.76 0.41±0.82 98.61%
S2 18.27±9.45 0.55±1.12 95.83%
Oracle 12.89±6.52 0.49±0.69 100%
p-value ** p<0.01 ** p<0.01 p = 0.08

In each setting, subjects are asked to reach and find target
objects six times, two times for each distance level. To
prevent the learning effect in repeated experiments, we set
the order of settings based on a Latin Square design.

3) User: We conducted a user study with 12 totally blind
users. It took 80 minutes for each participant to finish the
experiment. In the experiment, the participant would wear
the wearable assistive system we proposed (see Fig. 4 (a)).
Before the experiment of each setting, we gave them instruc-
tion on utilizing our system to let them be familiar with the
settings. At the end of the experiment, we interviewed the
subjects experience.

Through this experimental setup, we can appropriately
measure the proposed system’s efficacy.

B. Time and Superfluous contacts

To highlight the efficiency and accuracy when using our
systems, we did a comparison of the four systems on time
consumption and the number of superfluous contacts with
irrelevant objects. Tab. III shows that S1, S2 outperform the
baseline in average time consumption conspicuously. Aside
from time consumption, the assistive systems can also reduce
5.28 times superfluous contacts in baseline to less than one
time. Among all assistive systems, Oracle consumes less time
than S1 and S2 do. The difference is due to the camera’s
limited angle of view in S1 and S2. In S1 and S2, the target
object needs to be captured by our camera to activate the
vibrotactile guidance. Hence, subjects have to spend time on
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TABLE IV: Measurements of time consumption and number
of superfluous contacts within each distance level. S1 and
S2 guide subjects to reach target objects with less time
consumption and number of contacts in every distance level
than baseline.

Time Consumption (sec) Number of Contacts
Near Medium Far Near Medium Far

B 23.07 22.25 25.50 5.09 4.82 5.95
S1 14.76 17.63 18.23 0.25 0.48 0.50
S2 17.23 17.11 20.63 0.33 0.65 0.68
Oracle 11.94 12.65 14.09 0.29 0.54 0.62

TABLE V: Post-hoc Tukey HSD Test results on the mea-
surements. The critical value of the Tukey HSD Qstatistic
based on the k = 4 groups and v = 275 degrees of freedom
for the error term, for significance level α = 0.01 and 0.05
(p-values) in the Standardized Range distribution. We present
the significance (p-value) of the observed Qstatistic of Qi, j.

Time Consumption (sec.) Number of contacts
Pair Q statistic p-value Q statistic p-value
B vs S1 5.78 ** p<0.01 21.67 ** p<0.01
B vs S2 4.54 ** p<0.01 21.67 ** p<0.01
B vs Oracle 9.22 ** p<0.01 22.20 ** p<0.01
S1 vs S2 1.2 0.80 0.66 0.90
S1 vs Oracle 3.47 0.07 0.37 0.90
S2 vs Oracle 4.67 ** p<0.01 0.30 0.90

scanning the table with the hand camera first. In contrast,
Oracle can locate 3-D positions of target objects and users’
hands directly, so it is able to guide the users immediately
after the experiment starts.

Also, we analyze the results at 3 distance levels (see
Tab. IV). We find users spent less time and made less number
of superfluous contacts using S1 and S2, and that these
systems are more efficient than baseline at all distance levels.

On the other hand, we did a Tukey HSD test to identify the
significance of the difference in each pair group (see Tab. V).
The results support our previous summary that S1 and S2 are
significantly different from baseline, and can guide subjects
reach target objects more efficiently and accurately.

The comparison between S1 and S2 highlights the im-
portance of distance-based vibrotactile feedback. Although
the difference is less significant than all the other pairs,
in a post-study interview, 9 out of 12 subjects considered
the distance information provided by the vibration guidance
helpful. Hence, we further design an experiment to highlight
the importance of distance information in Sec. VI-D.

Overall, less time consumption and the less number of
superfluous contacts prove that our system is more efficient
and accurate in guiding BVI people to reach target objects.
C. Hand Search Space and Hand Moving Trajectory

Our system helps users do efficient, local search around
the target object instead of exhaustive search over the whole
table. To support this argument, we monitor hand moving
trajectory using the birds’ eye view camera (see Fig. 7). In
the baseline setting, the subject’s hand tended to carry out an
exhaustive search. In S1 and S2 settings, the trajectories show
that subjects follow instructions to reaching the object: (1)
reaching the table, (2) scanning the objects on the table with

Fig. 7: Typical trajectory patterns of different system settings.

Fig. 8: Blue and green solid lines are users’ mean hand-
moving velocities over distance under S1 and S2 systems,
respectively, while blue and green shaded areas are the
±standard deviation.

the camera until the target object is detected, and (3) heading
toward the target object with vibration guidance (see the
supplementary video). In Oracle setting, the trajectory shows
that subjects headed toward the object by the vibration.

In addition, we use a violin plot in Fig. 9 to show
distance distribution compared across each system. In the
baseline setting, distance distribution is uniform over all the
distance. In contrast, S1, S2, and Oracle all have high density
distribution over short distances, which indicates that users
tend to do a local search when they are close to the targets
with assistive systems.

D. Object Distance Effect
There are scenarios that the desired objects need to be

reached carefully. In such case, the distance information
becomes essential. Hence, to identify the benefit of distance
information, subjects are asked to reach an easily knocked-
down plastic bottle using S1 and S2. Then, we analyze the re-
lation between hand-moving speed and the distance between
the hand and the object. We find that subjects would establish
a rough object distance in their mind after several trials in
experiments. Hence, they tended to lower the hand-moving
speeds roughly when they were approaching to an easily
knocked-down plastic bottle. However, with the distance
information, their hand-moving speeds can decrease more
steadily than in S2 (see Fig. 8). Also, among all 12 subjects,
9 of them expressed that the distance information helped
them establish precise object positions in mind with more
confidence. Furthermore, in Fig. 9, since S1 shows higher
distribution density at short distances than S2 does, we infer
that users will do local searches with distance information.
Finally, we conclude that (1) the distance information is
proved necessary through varied vibration period, (2) the
local search property of S1 is stronger than that of S2.
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E. Failure Case

There are some failure cases worth discussion. When
subjects fail to reach the target object within the time limit,
we label the trials as the failure cases. In our user study,
there are 5 out of 72 failure cases in the baseline setting, 1
failure cases in S1, 3 failure case in S2, while 0 failure case
in Oracle. Next, we will list some factors that cause such
failures. The failure cases in the baseline setting are due to
human error as there is no assistance from any system. To
illustrate, since some subjects search the table arbitrarily and
do not exactly bear in mind which area they have searched,
some objects are easy to be missed.

For S1 and S2, the failure reason consists of human
error and functional error in the visual algorithm. For the
human error, few subjects are not sensitive to the vibrotactile-
feedback or may feel fatigue after receiving the vibrotactile-
feedback for a while.

Next, there are two types of functional error. The first one
is false positives detection. In most of the time, the false
positive will vanish within few frames. However, if the false
positive has existed for a period, subjects will reach the miss-
classified object. The other type is occlusion. Our visual
algorithm can detect the partially occluded target objects.
However, if the target object is occluded severely, this will
cause failure cases. In short, human error, false positives, and
occlusion are in majority of all failure cases.

F. Post-study Interview

In the post-study interviews, most of the users replied that
this system can help them find desired objects in unfamiliar
environments. Besides, 10 out of 12 subjects described our
system a reliable assistive equipment after the experiments.
Also, they considered our ability to detect unseen objects
as a great feature. In this way, they do not need to collect
their own database of personal objects. Some subjects also
suggested that we can extend the search space from a 2-D
plane (e.g., table) to a 3-D layout (e.g. refrigerator, cabinet)
to further enlarge the capability of our system. We take this
suggestion as great direction for future work.

VII. CONCLUSION

We develop a Deep Learning-based Wearable Vision-
system with Vibrotactile-feedback (DLWV2) to guide Blind
and Visually Impaired (BVI) people for reaching objects. To
train our system, a novel combination of HTC Vive Tracker
with our system enables us to automatically obtain the
ground-truth labels while requiring very little human efforts
to set up the system. We conduct a thorough user study on 12
BVI people in new environments and object instances which
are unseen during training. Our system outperforms the non-
assistive guiding strategy with statistic significance. Finally,
the interview with BVI users confirms that our system with
distance-based vibrotactile feedback is mostly preferred.
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